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ABSTRACT
_..4.,

.W consider- large. sparse linear systems which result from the discretization of par-

tial differential equations on regular and irregular domains, and we focu-on the application

of the preconditioned conjugate gradient (PCCG) method to the solution of such systems.

More specifically, the goal of this paper is the efficient implementation of the PCCG method

on vector supercomputers. The contribution to the above goal is made by 1) the introduc- A.

.4.. tion of a data structure which may be effectively manipulated on vector machines, 2) the

utilization of preconditioning matrices which are obtained by incomplete factorization with

diagonal update sets, and 3) the introduction of new numbering schemes for both regular

and irregular grids.

) This work is. in part, supported under ONR contract N00014-85-K-0339 and Air force contract
AFOSR-84-0131. The experimental results were obtained on the CRAY X-MP of the Pittsburgh Super- -
computing Center.

On leave from the Department of Computer Science, Purdue University, West Lafayette IN 47907"
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1. INTRODUCTION
%./

Consider the linear system

A b (1)

where A is a large n Xn symmetric, positive definite matrix. It is widely accepted that the

conjugate gradient method (CG) may compete with direct methods for the solution of (1) F

only if the matrix A is suitably preconditioned. In other words, in order to speed up the

convergence of the CG iteration, it is essential to find a preconditioning matrix M Z A , and

then apply the CG method to the solution of M A x = M b. The resulting precondi-

tioned CG method (PCCG) is described as follows:

ALG1 - PCCG:"

Chose an initial guess xo. -

ro=b -Ax o  ho-po=M-0 ro. %

Repeat for i =0, • until convergence. -- "-

5$ - <r .hi >1) a
<Api.p,>

2) xi+:=Ixi + 0, p r+:=1r -i a A pi

3) hi +1 M 1 rih l +1 __

<r i ,h i  > _._'

5) p +1  hi+1 + Pi pi

Where, <x y> denotes the inner product of x and y. If the preconditioning matrix is

chosen such that M =UrDU, for some upper triangular matrix U and some diagonal ..

matrix D, then it is possible to reduce the linear system Mhi +1=r, +1 in step 3 of ALG1 into

two triangular systems. The solution of these systems is the price which is to be paid for

speeding up the convergence of the basic CG method (for which M =1).

Unfortunately, this price may be quite high when the PCCG is implemented on vector

supercomputers. More specifically, the solution of a triangular system is a recursive pro-

-S *#'. 1'
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cess which may be very inefficient on vector and pipelined computers. In order to overcome

this difficulty, alternative preconditioners have been considered (see e.g. [1. 3. 16, 20, 23]). *xe

Also, multicoloring techniques have been used to reorder the rows and columns of the

matrix such that to minimize the data dependencies, and thus minimize the effect of recur-

sion (see e.g. [9, 17. 21. 221). However, experimental results [9, 17. 22] show that mul-

ticolor orderings decrease the rate of convergence of the PCCG method. These results raise

the following challenge which was suggested by David Young and al [251: "Can we find an

iterative algorithm which is substantially better on supercomputers than the basic CG

method?".

Numerical solution techniques of partial differential equations (PDE) are major %

sources of large linear systems. In any of these systems, the coefficient matrix A is gen-

erated by the discretization of a PDE on a finite grid G such that each row of A

corresponds to a node in G. The specific discretization used defines a neighboring relation

between the nodes of G. For example. if finite element analysis is used, then two nodes are 9..

neighbors if they belong to the same element. This neighboring relation determines the

sparsity structure of A . More specifically, an element a i. of A is non-zero only if nodes i

and j are neighbors in G.

For rectangular domains covered by regular grids, the non-zero elements in A are ...
confined to few diagonals. In this case, good preconditioning matrices may be obtained by

the incomplete Cholesky factorization of A [7. 11, 12]. Namely a Cholesky factorization in

which only selected elements of A are modified during the factorization process. The posi-

tions of these selected elements are specified by an update set P. and the corresponding fac-

torization is denoted by IC (P). For example. if P = P = (i ,J );a, , * 0). the set of posi-

tions which contain non-zeroes in A . then the corresponding Choleskv factorization.

IC (P). does not allow any fill-ins in tne matrix A . The conjugate gradient method which .

uses a preconditioned matrix obtained by an incomplete Cholesky factorization with update

*. set P is denoted by IC (P)/PCCG.

f.e..d: "
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If, on the other hand, the matrix A is generated from irregular grids. then. its non-

zero elements are not confined to any regular pattern. In this case. a suitable precondition- %'

ing of (1) may be obtained by chosing M to be the SSOR matrix [8].

In order to obtain efficient implementations of the IC (P )/PCCG methods on super-

computers. advances have to be made in three fronts. 1) suitable data structures which are N

efficiently manipulated on vector computers have to be chosen. 2) better preconditioning

matrices have to be used. 3) renumbering schemes have to be found which satisfy a balance -

between the advantages of increasing the recursion span in step 3.3 of ALGI and the disad-

vantages of slowing down the convergence of the PCCG method.

In this paper, we consider each of the above three fronts. More specifically, we

present in Section 2 a data structure which may be used efficiently for the manipulation of

general sparse matrices on vector computers. Then in Section 3. we examine the class of

preconditioning matrices obtained by incomplete Cholesky factorizations. By using the

notion of update sets rather than the fill-in sets. we show that the SSOR matrices are -

incomplete factorization matrices with an empty update set. Also, the zero extension fac-

torizations ICCG (0) [13] and MICCG (0) [7] are special instances of an incomplete factori-

zation IC(Pd ) in which the update set is given by Pd = {(i ,i i =1.....n 1. This IC(Pd)

factorization is. in fact, general, and may be applied to matrices which are generated from

irregular grids.

In Section 4.1, column-wise multicolor schemes are introduced for rectangular grids.

and in Section 4.2, numbering schemes for pierced rectangular grids are described and their"-.

effect on the vectorization potential of the PCCG method is analyzed. In Section 4.3. the

multicolor numbering schemes are generalized and applied to irregular grids, and finally, in

Section 5. we present some experimental results which have been obtained on the CRAY X-

MP vector computer.

. U .
{" . v
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2. THE STRIPE DATA STRUCTURE

In [14]. stripe data structures are introduced as a means to include all the non-zero

elements of a matrix in a structure which is suitable for parallel processing on linear com-

putational arrays. In this section. we will demonstrate that this same structure may be

used effectively to process sparse matrices on pipelined and vector computers. .'f -

Very briefly, a stripe in an n Xn matrix A is a set of positions S =

(i ,o(i)) 6 , where 1, =( ....n and a is a strictly increasing function, that is if

(i .o'(i)) and(j r(j )) are in S, then ._

< i j = > (1)i )"-a

Note that a stripe need not include a position for every row of the matrix. If. however, it

does contain a position for every row. then it is called a complete stripe. Two stripes."

S1-{(i o-(i ))) and S 2 1(i ,o 2(i ))} are ordered by S, < S 2 if, for any (i ,o' 1(i ))Des and

( o'02 (j )).S2 we have

iw. 00%

With this, a stripe structure of A is defined as a set of stripes, A = {S_,

such that 1) S-_, < < and 2) the position (i .j ) of any non-zero element aj,. of A pe

.A.is in some stripe Sk -1rj<k 4<r2. The number of stripes 7r=7rl+Wr2+1 is called the stripe

count. In [141. an algorithm is given for the construction of stripe structures for sparse

matrices, in general, and for finite element matrices, in particular [15].

The elements of a striped matrix A may be stored in an n Xr array, AE, and the %

P position of each element may be specified in another n xr array, AP. More specifically, we

may set

A.,. (, if (i ,cri. (U )) S' - '.

AE (i k +oset ) 1 0 otherwise (3.a)

k ( ) if ( 4 (i) e SAPi Gk +offset ) n +1 otherwise (3. b) .""

,€. " % P.



a 0 1.; 4..-aU 0 0 0 0 0 0 0 A a1.4 a 1. 11 11 1 4 5
0 az 0 0 -a 2 .... , 0 0 0 0 0 a .1 a 3 0 11 112 5 11
0 00 0 0'a 3O 0 0 0 0 a3.3 0 az 3. 1 3 11 S

a41 0 0 a4.4 0 a46 0 O-8,a,4 0 0 a41 4.4 a4A a11 1 4 6 9 ,
as aa0 0 'drs.5 0 a S 7 0 N\ 0 a531 as53 a 5 S85 37 0 1 2 5 7 11

0 0 0a6. 0 aA 0 -6" a ,"  
0 a6.4 aA a 6.9 a6.10 11 4 6 9 10

0 a00 0.. j0 \O 0 a7.S a.7 0 0 11 5 7 1111
00 a' 2. 0 0\0 0 0-- 0 o au & 0 aA a&.1o 0 3 11 8 10 11

0 0 0 -- 4 a9. a.9 0 0 4 6 9 11 11
0 0 0 0 -0--a a a 0.o a *A a o.8 a1l. o 0 0 6 3 101111

(a) The matrix (b) AE (c) AP

Fig 1 - A stripe structure of a sparse matrix

Here, offset "-rz+1. and AP(i J +offset )=n +1 is used to indicate that S, does not contain a

position in row i. In Figure 1. we give an example which illustrates the concept of stripe

data structures. Clearly, this s-tripe storage scheme is a generalization of the diagonal

scheme used in [2.51 and [10]. It is also a more restricted form of the data structure used in

[19]. in which neither the strictly increasing property (1). nor the non-intersecting property

(2) holds. The former property is crucial for the efficient manipulation of symmetric

matrices on vector computers, while the latter is only useful for the manipulation of sparse

matrices on linear computational networks [14]. ,. . ..

If A is a symmetric matrix with non-zero diagonal elements, then it is possible to con-

struct a stripe structure EA {S_, • , . such that the lower stripes, S_. k =1,....7r, ,

are mirror images of the upper stripes, Sk. k =1....,7r,. In this case. only the elements in

So.••S, need to be stored in A and AP (with offset =1 in equations (3)). ._

Given a symmetric matrix A in stripe storage form. the computation of the product

vector y =Ax, for any vector x, may be accomplished by the multiplication of each ele-

ment a,,a,(j) in an upper stripe Sk with both x, and x,,(i). and then the accumulation of

the results in y,,(i) and y,, respectively. Using a pseudo CRAY-fortran language. the

matrix/vector multiplication algorithm may be written as follows:

ALG2 : Symmetric Matrix/Vector Multiplication

x (n +1) = 0

%'.'..



... .xr. ,J. - " O., ' .'V. . . . - , .' h -- Tr' ' Y '. )- P". - ". . '. . '. - *-''. . . . - . o,_'-"

", .'.'

-6-

2) y (i ) AE(i.offset)* x (i)
3) DOk =1 ...r,

3.1) call gather(n .w ,x AP(lc +offset))

3.2) y(i ) = y(i ) + AE(i k +offset )* w(i) i=1 .....n '.

3.3) z (i ) AE(i k+offset)* x (i ) i = ....

3.4) w(i)0 i=1.....n

3.5) call scatter(n ,w AP (0k +offset )))

3.6) y(i i)+w(i) i 1 .......n

Step 2 in ALG2 accumulates in y the contribution of So. steps 3.1 and 3.2 accumulate

the contribution of S. , and steps 3.3-3.6 accumulate the contribution of S-k. The strictly . "-'-

increasing property (1) is essential for the correctness of the above algorithm because it

ensures that if i #j. then -k. (i )*# ak (j). If this is not satisfied, then z (o (i )) and

z (ok (j)) will be scattered to the same location in w. and thus only one of them will be

accumulated in y.

Besides matrix/vector multiplication, the stripe structure may be used in the solution

of triangular linear systems. For example. consider the upper triangular system

(D +U )x =b. where D is a diagonal matrix, and U is a strictly upper triangular matrix

with a stripe structure -~ S1.'" S }. The solution of this system is a recursive pro-

cess in which the calculation of xi proceeds in the order i =n ...J, with xi depending on the

previously calculated values xj, j >i. The minimum recursion span. that is the minimum

integer d such that x, does not depend on x, +1. -.xi +d. is equal to the upper zero stretch .-.. .

of the matrix defined as follows:

Definition: The upper zero stretch of a matrix A is the largest integer A2 such that a, i =0

for i =1,...,n and i <j <I +A2. In other words. A2 is the size of the maximum band above

(and including) the main diagonal which contains zero elements.

For the upper triangular matrix U. the upper zero stretch is found, by properties (1) and

(2). to be

I.2 ,..
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4 2 = max{ o 1(i )-i (i o1 (i )) S I }

Given Eu and A2. the triangular system (D +U)x =b may be solved using operations
".° .. 55

on vectors of length A2. Similarly. given a strictly lower triangular matrix L and a stripe .4-" "

structure IL -- S_ j,• -••-•a lower triangular system of the form (L +D )x =b may be

solved using operations on vectors of length A1, where A, is the lower zero stretch of L ._

given by

A, = maxi i -o'_.(i) (i .o_1 (i )) e S- 1 I }'" "s

When the IC/PCCG method is applied to symmetric matrices, it is necessary to solve

in each iteration two triangular systems of the forms (L +D )x =b and (D +U )y =x, with

L=U. If u ={(S 1. S } is a stripe structure for U, then it is possible to construct a ,

stripe structure EL =IS,,•. • S- 1) for L such that each stripe S_1 I <k <r, is the mir-

ror image of Sk. In this case, only U needs to be stored. Let UE and UP be the arrays used -

to store U in a way analogous to equations (3) (with offset =0). and let A, be the lower .

(upper) zero stretch of L (U).

The solution of (L +D )x =b is affected by the absence of an explicit storage for the

elements of L. More specifically, consider the usual forward substitution algorithm. In

this algorithm, the solution proceeds such that, after the computation of x 1, ,,x,. for

some r, the next A, elements of x are computed by, first, computing the A, component z,.

i=r A, +1. • (r +1)A, of the vector z =b-Lx, and then dividing each z, by di. the it .-

component of D. However, the above scheme is not efficient because it ;s difficult to access.

in UE, the elements of EL which belong to rows r A, +1. .(r +1)A,. In order to over-

come this difficulty. we use a column sweep algorithm (ji algorithm according to [5]).

More specifically. we let Lj be the j" column of L and we compute the vector
n( +1 )..% ....,..

z =b-Lx =b-7_Ljx, progressively by accumulating _ L, x, into z as soon as the
t=1 ,=,+ ..% +1 €''+.7'

%" S

appropriate values of x are computed. This requires the access of the elements of I, which ', ".

I.%.,

5 " -

..S - . ". . - o , .- . - . " . " . - a " . " . .+ . . " . " . " .. - . " .. - " . " . ,. " . . ' .. • .' -, . " . , " #
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belong to columns r A, +I, 1. .(r +1)A,, that is the elements of Zu which belong to rows Ol

r A5 +1. • (r +1)A,. These elements may be easily accessed in UE.

More precisely, the solution of (L +D )x =b may be described by the following algo-.P

rithm, in which we assume, for simplicity, that n =A, m for some integer m: Pr,

ALG3: Forward Substitution

1) z (i)= b (i) i =1.....n

2) x (i) z (i) /d (i) i=1.

3) FOR r =0....m -1 DO

3.0) Let i, r A, +1 and i= (r +1)A,

3.1) FOR k=I.. DO

3.1.1) w(i )= UE(ik)* x(i) i =i, . i,

3.1.2) u(i)= 0 i=i, n

3.1.3) call scatter(A, ,u .UP (i k ),w (i,))

3.1.4) z (i) =z (i)- u (i) i=i n

3.2) x(i) z(i) /d(i) i =i,+. .i, +A,

Note that in 3.1.3. the A, elements of w may be scattered anywhere in u. For this

4 reason the summation in 3.1.4 runs up to i =n. An alternative way for writing the inner

loop in step 3.1 is as follows

3.1.1) call gather(A, ,u (i, ),z (i, ).UP(i, .k ))

3.1.2) u (i)= u(i )UE(i.k)* x() i=. ..... i,

3.1.3) call scatter(A, .z (, ).UP (i, .k ).u (i, ))

Clearly. this second alternative reduces the number of operations. Moreover, the subtrac-

tion and the multiplication are performed in the same step which allows for the chaining of %

the two operations. The choice between the two alternatives should depend on the relative -. _,

execution time of the different vector instructions on the specific computer used. For exam-

ple. actual measurements on the CRAY X-MP shows that the slow down due to the addi-

.5 tional call to "gather" in the second alternative more than offsets the gain obtained from the

V Or4 * " ' ** . ".- .- .- X' .. ," ". " ," . ." ,, .. ", .",'""''-., ..*. "'............ ... .. 5. . .... .. ; -XI;..; .... ..
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chaining of the operations and the lower operation count.

3. INCOMPLETE FACTORIZATIONS WITH DIAGONAL UPDATE SETS

Given a symmetric positive definite matrix A of order n the incomplete factorization

of A is a splitting of the form

A M + R (4.a)

where

M U(+U)T D (1 +U) (4.b)

and I is the identity matrix. D is a diagonal matrix and U is a strictly upper triangular

matrix. The matrices D and U are determined from A by applying a factorization pro-

cedure in which only specific elements of A may be updated during the factorization. More

specifically, if P (i .j) i .j e[1.n ]} is any subset of positions in A .then the corresponding

incomplete factors of A are obtained as follows:

ALG4: Incomplete Cholesky Factorization

FOR i =1, .n DO

dij -i" ai . .. ".-

FOR j=i+l,-..n DO

ui.j = ai.) dijie.

FOR j =i +1..n DO

FORk j..=j ,n DO

IF (j.k )E P THENa.k ak -u,., * * d,

We call P the update set and we call the corresponding factorization (4.b) and split-

ting (4.a) the IC (P) factorization and splitting of A , respectively. A possible choice of P

is the set P, = {(i .j ): a* 0} of positions which contain non-zero elements in A -

Manteuffel [11] suggested a shifted incomplete Cholesky splitting (SIC) in which the ' .-

off diagonal elements of of A are scaled bv some factor ca before the factorization. In order

to be more specific, let F and A be the upper triangular and the diagonal parts of A

..--
-. -~-, - A ~ ~ ~ ~ .. -' -~ .--. -.. A
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respectively. That is

A =F r +A+F. (5)

With this, consider the shifted matrix

A =A+to(Fr +F)

and let U and D be the factors produced by the application of ALG4 to A The SIC (P .W) -J

splitting of A , corresponding to the update set P and the shift factor co. is then given by .

A = ( + U) 5 ( + CF) + k

Note that SIC (P .w) reduces to IC (P) for wu= 1.

Factorizations with update sets larger than, or equal to, Pa have been considered in the

literature (e.g. [13]) for matrices which are generated from rectangular grids. For these

matrices, ALG4 may be greatly simplified. however. for matrices which are generated ,

from irregular grids, the choice of P ZP. does not seem useful because. even though the

execution of ALG4 is rather costly, only few of the terms u, , * ui k in the inner loop are

non-zeroes, thus causing only few updates in the entries of A. In this case, the SSOR split- J.

ting of A may be used.

SSOR splitting as incomplete factorization. . .

If the update set P is taken to be the empty set (b, then it is easy to see that the fac-

tors UO and Do resulting from ALG4 are given by

D, -A

*O A P F ..

Also, if the off-diagonal elements of A are shifted by (a before factorization. then the

resulting factors are given by

D, = A (6.a)

Uo = cu A F (6.b)

, 1Hence, the SIC (4,.o) preconditioning matrix is'

* --

" 1

.- =1,,

".4 ,I
• . . ° . °. =. . .. . % , .. . . .° ,. . % % % . . o . .. • . . =. .. ° . ° . 49
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M U(I +toA- 1 F)Y A(I +tA- 1 F) (7)

=(A+,wF)Y A (A+cwF)

Which is equal to the SSOR preconditioning matrix, up to a scalar factor of W(2--W). This

scalar factor does not have any effect from the point of view of the PCCG method.

Diagonal update Cholesky factorization.

Consider non-shifted incomplete factorization. We may envision a linear scale on .,.

which the preconditioners obtained from ALG4 are laid according to the size of the update

set P (see Fig 2). Clearly, the exact factorization IC (P,) corresponding to

P, ={(i ,j)i j=....n ). and the SSOR splitting IC (PO) are laid at the two ends of the :!.,,::

scale. with IC (Pa) somewhere in between. The results of Manteuffel [II] for M matrices

show that, if P1 9 P2, then the IC (P1 )/PCCG may not outperform IC (P2 )IPCCG. In- 4

other words, the performance of the IC /PCCG improves when we move to the right on the

scale of Fig 2.

4 Pd Pa P, size of the
. update set

SSOR diagonal standard exact .
update IC Cholesky

Fig 2 - The spectrum of incomplete Cholesky factorizations

The diagonal update factorization is the factorization obtained from ALG4 with the

update set given by Pd = (i .i) i =1...n . That is. only the diagonals of A are updated

in ALG4. If we shift the matrix A bv w before applying ALG4. then it is easy to see that ',

the factors D and Ud resulting from the factorization are given by N

Dd =A

U = 4  (A)- ' F

where, by ALG4. the elements =, .i 1..n of the diagonal matrix A are given by |.& .. U

.a j

V V V ~%***
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The equations which express the solution of upper triangular linear systems are simi- .-.

lar to the above equations. with the division replaced by a multiplication. Assuming that

the execution of a vector divide operation is at most four times slower than a vector multi-

ply (on the CRAY the ratio is found to be 2.5 for vectors of length 6400). then it is clear

that the cost of computing A is at most equal to the cost of one PCCG iteration. Given .

the SIC (Pd .a) preconditioning matrix is

Md =(U+ o)A- 1 FY A(C1+toA F) (8)

In addition to being easy to compute, both SSOR and SIC (Pd .o) preconditioners have

an advantage over factorizations with update sets larger than Pd. Namely, they may lead 4.:

to reduced computational work in each PCCG iteration. More specifically. each iteration in

ALGI requires, in addition to 0 (n) operations, both the matrix/vector multiplication Ap,

and the solution of two triangular systems in step 3. However, for SSOR and SIC (Pd ,0)

preconditioners. ALG1 may be rewritten such that it requires only the solution of two tri-

angular systems, thus reducing the work per iteration by a factor of. almost 2. For exam-

ple, if the SSOR matrix (7) is used in ALGi, and the following substitution is made

H = (A + coF)-T A (A +coF)-' (9)

then. it is possible to rewrite the algorithm such that it only involves, besides 0 (n) opera-

tions. the multiplication of a vector p by H (see [61 for details). From (9) and (5). this

multiplication may be computed as follows: .

-. Oq ( ) (1A + () Av(

where v = (-A + F)-1 p. That is the multiplication H p may be performed by solving

two triangular systems.

The same argument applies to the SIC (Pd .&) matrix (8). which has the same form as ''.

(7), except that A is replaced by A. In this case, the multiplication Hp may be obtained

from equation (10) with A replaced by A.

N-a-

*'a %!::i '

%aa .. ~% a• .a-
°

a
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Given that Pd 4. then according to [11] IC (Pd)/PCCG is expected to outperform

SSOR /PCCG for M matrices. The examples considered in Section 5 suggest that, in gen-
L..

eral. IC (Pd )/PCCG is at least as efficient as the SSOR /PCCG.

4. MULTICOLOR NUMBERING SCHEMES

The major difficulty in the vectorization of the IC/PCCG method concerns the recur-

sive nature of the solution of triangular linear systems. In order to overcome this

difficulty, many multicolor numbering schemes have been suggested [9. 17. 21. 22] for rec-

tangular grids. Their goal is to obtain a coefficient matrix A which may be partitioned into

submatrices Ai, . i .j1...p. for some p. such that A1 1 . i =1,...,p are diagonal matrices.

This goal is achieved by applying an algorithm which has the following form: "

ALG5 : A Global Multicolor Numbering Scheme

I) Assign to each node in the grid a color from a set of p colors such that neighbor-

ing nodes have different colors. Chose p to be as small as possible. "

a. 2) For each color c =1.....p. number all the nodes which have color c in a column- %

wise sequential order.

€i The above numbering scheme is global in the sense that all the nodes which have the i

same color are numbered consecutively. Although global numbering schemes produce

matrices with large zero stretch (approximately -. where n is the number of nodes in theP "

grid), experience [9. 17, 22] shows that these schemes worsen the condition of the matrix. t. e

thus slowing down the convergence of the IC/PCCG method. In this section, we suggest a

numbering scheme which compromises between the zero stretch of the matrix and the con- r:-A

vergence properties of the PCCG. We first introduce the scheme for rectangular grids.

4.1. Column-wise multicolor numbering of rectangular grids

Let T be an upper (or a lower) triangular matrix given in striped form. It was shown --77

in Section 2 that the larger the zero stretch of T. the more efficient is the solution of Tx =b

% .%4 .-
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on vector computers. However, the advantage of having large zero stretches when the

IC/PCCG is applied to the solution of linear systems should be put in its proper prospec-

tive. More specifically, it is important to note the following:

1) the zero stretch does not affect the matrix/vector multiplication, the inner products corn- .

putation or the vector addition operations in ALGI.

2) the solution of a triangular linear system includes data movement operations (e.g. scatter .

and gather in ALG3). These operations are slower than vector arithmetic operations on

existing vector computers, and hence they dominate the execution time of the solution. e

3) the advantage of having long vectors is relatively limited in data movement operations

compared to arithmetic operations. More specifically, the execution time of a vector arith-

metic operation on a pipeline computer is usually specified by 7', +6P , where 7, is a vector

setup time. 1p is pipe unit time and 8 is the vector length. Usually. T, is much larger that

'rP, which makes it very advantageous to use long vectors. For example, a multiply/add

vector operation on the CRAY X-MP consumes 70 and 170 ju-sec. for 8 = 640 and 6400. 4

respectively. On the other hand, using long vector in data movement operations is less

advantageous because the pipe unit time for vector data movement operations is relatively

large. and depends on the distribution of data in memory. For example, a specific gather .%V

operation on the CRAY X-MP consumes 40 and 370 ju-sec for 8 = 640 and 6400. respec- .

tively. The corresponding times for a scatter operation are 90 and 410 p-sec., respectively.

Given the above facts. our main goal in the vectorization of the IC /PCCG method

should be to increase the zero stretch in the matrices to a point which prevents the recursive

solution of triangular systems from dominating the entire process. However, once the exe- &V

cution time of ALGI is not dominated by the time for step 3. any further increase of the

zero stretches will have a relatively limited effect on the execution time of the IC /PCCG * .

iteration. For instance, when step 3 consumes only one fourth of the execution time of '."*4

ALGI. the doubling of the speed of step 3 speeds up the entire algorithm by less than 1.15.

.-...-.
'S.",5' .. "...: .:,i'.,,...2 ' ..... J ,L.. .... .-.- L, * * ,,.*
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The above discussion suggests that a numbering scheme which produces "reasonably

conditioned" matrices with "reasonable" zero stretches may be better than a numbering

scheme which produces "ill conditioned" matrices with very large zero stretches. The _.12",.

column-wise multicoloring scheme belongs to the former class. It is described, for an r xm

rectangular grid, by the following algorithm: e

ALG6 : A Column-Wise Multicolor Numbering Scheme

1) Assign to each node in the grid a color from a set of q colors such that neighbor-

ing nodes that are in the same column have different colors. Chose q to be as

small as possible.

2) FOR j=1.m DO ,f- ,-%

FOR each color c=1 .... q. number, sequentially, the nodes in column j

which have color c.

It may be shown that ALG6 produces matrices with zero stretches equal to -, while
q

r m KALG5 produces matrices with zero stretches r The minimal values of q and p for

different discretization stencils are given in Table 1, where FD5 denotes the 5-point finite

difference discretization. and FE3 , FE 4, FE 6 and FE9 denote finite element discretizations

with 3-node triangles, 4-node rectangles, 6-node triangles and 9-node rectangles, respec-

tively.

FD 5  FE3  FE 4  FE6  FE9
p for global schemes 2 3 4 6 9
q for column-wise schemes 2 2 2 3 3

Table 1 - minimal number of colors in multicoloring schemes

4.2. Numbering pierced rectangular grids

Pierced rectangular grids (see Fig 3) are defined in [15] to be rectangular grids from

which some subrectangles are removed. This type of grids is useful because any irregular

". domain may be covered by a pierced rectangular grid. or by a grid which is isomorphic to a

I ~V ~,%j% . 1
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pierced rectangular grid. 
%

t4 21 30 6 S %,

13 211 6 2

27 i2ff f941AI ,-16
1223 3 4 s 6 62%

33 A!_ 4 1 S S1 6

1 1. 36 2 5

Fig 3 - A pierced rectangular grid numbered with a
2-color column-wise scheme.

Let Q be a rectangular grid which contains flQ nodes numbered by the integers 1...flQ

* according to some numbering scheme, and let 02 be a grid which is obtained by piercingQ

and which contains n 0 nodes. A renumbering of the nodes which are in fl may then be

* defined by a function vi that assigns to each node i . which is in both Q and fl. a unique

number P(i ). 1 Cv(i )-<n fl. This renumbering is said to be deduced from the numbering of

if Y is derived as follows%

ALG7 : Numbering Pierced Rectangular Grids

I=0

FORi -1 nQ DO

IF node i is infl THEN ig =of+ h w(i) I

ELSE each T (undefined)

The upper (or lower) zero stretch of the symmetric matrix generated from the pierced

rectangular grid a is then given by

A mint v(in)-(jI i and aare neighboring nodes in 0-

. ...-

'.d'.,-.',3

IF ndeiis i 12THENl = + 1" vi)=l. kw ..

ELS {N~ udeie)}
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The specific value of A in (1) depends on the shape of fl and on the numbering ,%

r.

scheme. However, due to the regularity of global and column-wise multicolor numberings.

it is possible, in both schemes. to establish upper and lower bounds for A. In the remainder

of this section. we will find such bounds for the FE 4 and FE9 discretizations. Similar

bounds may be derived for other discretizations. We start by deriving bounds on A for

column wise multicolor numberings.

Theorem 1: If either FE 4 or FE9 discretization is used, and a column-wise multicoloring

scheme is applied with q =2 or 3, respectively, then

cemin 1 <il A ce m".%.''
2

where ce min is the minimum number of elements in any column of elements in 11.

Proof: see the appendix.

For global coloring schemes, the bounds on A may be given in terms of the total

number of nodes n a in fl. For this, we first estimate the number of nodes in Dl which are

colored by any particular color.
if..f

Lemma 1: Let the n a nodes in a pierced rectangular domain Dt be numbered by first using %

a global multicolor scheme to number the smallest rectangular domain Q which enclose 0.

and then deducing the node numbers in fl using ALG7. If FE 4 or FE9 discretizations are

used with p =4 and 9, respectively, then for any particular 1, I < 14p , the number, n'0 , of

nodes given the color I is bound by %

1 2 2 2(1 no n' 4nn n n.(12) %€".

Proof: see the appendix
if5.In Figure 4. we color some specific rectangular grids to show that the bounds in

Lemma 1 are tight (the numbers in Fig 4 refer to colors). More specifically. for FE 4. the

44 -
grid in Figure 4(a) gives n -- n n and n = -=n .. Similarly. for FEO, n 0 - -n j in Fig-9 9.-5

1%
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ure 4(b). and n A =I-n n in Figure 4(c). Clearly. the grids in Fig 4 are rectangular grids.

which are special cases of pierced rectangular grids. %-i

2 5 4

11 4 7 1
1 4 7 1 4

f r o 3 6 i .

2 5 85
1 3 1 1 ' 4 7 1 '''''

1 4 7 1 4
(a) (b) (c) -.,'

Figure 4 -Tightening the bounds of Lemma t

The following theorem uses Lemma I to bound the zero stretch of the matrix resulting

from the finite element discretization. r thos e o

Theorem 2 Given the hypothesis of Lemma .the zero stretch of the matrix resulting from 

the finite element iscretization is bounded by o t i a hnf

Proof see the appendix. ap

Given a pierced rectangular grid fl the above bounds may be used for the apriori esti--

maion of the zero stretch which result from specific numbering schemes. The experiments

of Section 5 show that the convergence rate of the PCCG method is inversely related to the

zero stretch, A. of the e trion of that beyond a specific value of Ad the reduction in the

executitme of each PCCG iteration does not offset the increase in the number of itera-

tions. In this context, apriori estimates of A may help in chosing the best numbering .-...

scheme for fl.....

4.3. A multicolor numbering for irregular grids.."

-. In finite element analysis. it is often useful to change the density of the discretization.",

,_,, points among the different regions of the domain. This is especially advantageous if a rough

"- ,,. estimate of the solution is known or if an adaptive solution technique is applied. In both:'" %'...:I "!

cases, it is preferable to increase the density of the discretization points in the regions where

I .-. .
,.,,-, ,,,_,, .. _2 - -. e .. : . •- ... . . .- . -. . . . . . .- . . . . ., - _. __ . . . . . . . . .
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the solution is known to (or is found to) change rapidly. This desirable variation in density

may not. usually, be accomplished without the use of irregular grids.

All previous schemes for numbering irregular grids aimed at the reduction of the

band-width and the profile of the resulting matrices. This is particularly useful if direct .

methods are used for the solution of the linear systems resulting from the grids. However. 

as we explained in Section 2. if iterative solution methods are applied and vector computers

are used. then the efficiency of the solution process is determined by the zero stretch of the

matrix. In this section, we describe a multicoloring technique which aims at increasing the

zero stretch of the matrix.

Let G be the graph corresponding to a given irregular grid. That is. the nodes in G

correspond to the nodes in the grid, and any two neighboring nodes in the grid are connected

by an edge in G. Guided by the global multicoloring scheme for rectangular grids, our goal
.-.3-

is to partition G into disjoint subsets of nodes G'. I =1.....p, such that 1) p is as small as

possible. 2) no two node in any partition G' are neighbors, and 3) the variation in the size

of the partitions G . =1....p is minimal. Giver. such a partitioning. it is possible to ',

number the nodes in each subset consecutively. However, this does not guarantee a large 3,.

zero stretch if the numbering of the nodes within each partition G' is done arbitrarily. For

example, if the node numbered first in G' is connected to the node numbered last in G' -  "-

then the zero stretch is equal to unity. In other words. the relation between the nodes in

G t and G' - I should be taken into consideration in the numbering process.

The numbering scheme which we suggest consists of the following four steps:

1) The generation of a level structure {V .V 2 , • • such that the nodes in each level V, "3%

are not connected to the nodes in levels V.,. w >u +1 or w <u-1. In other words.

nodes in Vu may only be connected to nodes in V,- 1 and V,.-"

2) For each level Vu .the partitioning of the nodes in V., into the minimum number of .

independent sets V 1, V. 2, • such that the nodes in each Vu,' are independent. That is .1

no two nodes in V, are connected by an edge in G

,.-4

-I t . " , ' " , ' ' * .1 ' .. " " "" " ? " " " * 1 "* " "
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3) The formation of the partitions G. and

4) The actual numbering of the nodes.

In order to generate the level structure, we start from an arbitrary initial level V].

and we proceed in a way very similar to the Cuthill-Mckee Algorithm [4]. More

specifically, given a level V . we construct the next level V, +1 by including in it any node

which is connected to a node in V, and which is not in any previous level. A criteria which --

should guide the choice of VI is the desire to have E I V I I V, 1. where I I is
u =e'en u =odd

the number of nodes in Vu. For example. if we denote by CN, the uth column of nodes in

a pierced rectangular domain, then for FE 4 discretization. {CN 1,CN 2 .... is a level structure

in which the ratio of E I CN I to T I CN, I may be proven to be larger than 0.5 and
u =odd u =fven

smaller than 2 (see proof of Lemma I in the appendix).
% ..

Given a specific level. V.. the optimal generation of the independent sets V.V . 2...

is known to be NP complete. However. a simple algorithm which may be used for this gen-

eration proceeds by considering the nodes in V. in any given order. For each node i. i is

added to the first set Vu which does not contain a node that is a neighbor to i. If this con-

dition is not satisfied for any of the sets constructed so far, then, a new set which contains

only node i is created. Let s, be the number of independent sets constructed for V,. and

let I V,' I . 1 , su be the number of nodes in the set Vk .

For pierced rectangular domains and FE4 discretizations. the number of independent

subsets is constant for any level u. Namely s. =2. However. for general grids. s, may not .. .

be constant. In this case. we define smax = max(su }. Note that. for su <X KSmax. the sets V,

. are empty.

Given the independent sets. the partitions G I.G2. may be constructed by the com-
'5* P

bination of the appropriate independent sets such that the variation in the size of the

different partitions is as small as possible. For this, the following algorithm may be applied

N.%.

.'5'o.

•i°
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ALG8 : Creation of independent patritions

For I = 1, .2 Smax. initialize GI to the empty set.

For u =1,3,5. • Do

For X=1. .s .... . Do

Chose the partition G'. 1 1 1 < S max which contains, so far, the minimum

number of nodes (break ties arbitrarily), and set G= G1 U V .
.%

For u =2.4.6. Do -N.

For X=1. smax Do

Chose the partition G. s max < 1 ( 2 s max which contains, so far, the

minimum number of nodes (break ties arbitrarily), and set

G G U V.

After obtaining the 2s max partitions, we may then start the actual numbering of the

nodes. For this, we consider the partitions in the order G '. G 2 . and within each parti-

tion. G', we number the nodes sequentially such that if Vf and V, are two subsets in G'

with v >u. then the nodes in V. are numbered before the nodes in V,.-

Clearly, ALG8 guarantees that the sizes of the partitions G', I=1, . s.. max does not

differ by more than the size of the largest subset among all subsets V .. X 'r.max. ..

u =1.2..... The same applies to the partitions G' 1 =s max+l. -" .2s max. However, no rela-

tion may be established between the size of two partitions G' and G , 1 < s max and X > smax

without an explicit assumption about the size of each level Vu with respect to the following

level V,, 1. If an assumption of this kind is made, then it may be possible, following a rea-

soning similar to that of Theorem 2. to find a !ower bound on the value of the zero stretch ,

of the matrix resulting from this multicolor numbering scheme. We will not pursue this

issue any further. - "

We illustrate our numbering scheme by applying it to the grid of Figure 5. In this '

figure, a level structure (V. . V) is indicated by bold dashed lines, and within each

level V , the nodes which are assigned to the subsets V,'. V,2 and V') are marked by the

• . % - . * .. . . % " % = % • . % % ° .. . • . . . . , - . . . . ° . % .. % - % - °* % - •

..- .. • % .°.. ° ...... % . , h-... . -.



sNmbols e, 0 and A. respectively. The application of ALG8. then, results in the following

partitions:

so N %

symbols o, and AFi 5res utiolor numbericain of AG8 irregula grdlsi h oloig..

G2=V?~~. U VU.. Uv
G

3
=V 3 'Uv~ U.? Uv

%-U

Fihsnubrng g 5 8. How tigoothrsultein compare ithg thermarimumpssiblzer

shg met

qusinis negative.34OP

Finall, Fi we shud uoelhtth bove umbering schniremela gisdlbli hesneta

V, I U V 3 U V2 U V I.-
2I v U V 2 U V2 U V2 ""'

G 3 V I U VI5 U V 1, U V3 :::!:
G ' 4 v I U v 2 U v ..I'.
G 5V 2 U V1 U V2 .:;.
G 6V 3 U V I U V2

which leads to the numbering shown. It is easy to check that the zero stretch resulting from

this numbering is A - 8. How good is this result compared with the maximum possible zero

stretch for this specific grid?, and is there any numbering scheme which is not NP complete,

and which will produce the maximum zero stretch?. We do not know the answer to these -...

questions. but some preliminary results lead us to believe that the answer to the second ..

question is negative. ...

Finally. we should note that the above numbering scheme is global in the sense that :. :] " "

all the nodes which are given a particular color are numbered consecutively. A level-wise-..,..

numbering scheme analogous to the column-wise scheme of Section 4.1 may also be applied.

However, the construction of the subsets V. 1,V 2,,. in this case should be done such that

%

Ad

. .. . .... . .. ".--.'. , ..- .. .. ..... . .. . .. ,:......... .. .. . ,.. . ., ...... ..-,-., ., . ...:../ . .: .--. " v"-.1

• ..-, ...-.., -:. -,.:.....:,, ,, :.:--.--.- .- : "'._::;:,-z-. -.,::'::;?.- -'"; : - '<-. ,.;,- .; : -,-,- -- --"--'
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the size of these subsets is as uniform as possible.

5. NUMERICAL RESULTS

In order to evaluate the diagonal update technique of Section 3, and to test the

column-wise multicolor numbering scheme of Section 4. we implemented the PCCG method

on the CRAY X-MP using the stripe structure approach of Section 2. The implementation

allows for the solution of general symmetric sparse systems and provides for no precondi-

tioning, SSOR, SIC (Pd ca) or SIC (P, ,w) preconditioning. The PCCG iteration is stopped

when the 2-norm of both the residual and the step size fall below 10- 5 .

The linear systems used in our experiments are generated by using a modified version

of the finite element code of [2]. The modification incorporates the stripe data structure and

provides options for 1) the automatic specification of pierced rectangular domains and grids.

2) the choice of the numbering scheme (one color, column-wise multicolor or global mul-

ticolor). and 3) the application of finite difference discretization.

In this section, we report the results obtained for the following three problems:

Problem 1:

V 2U -u 0 on D

u1 + x y on OD

where D is the unit square. For this problem we consider both FD 5 and FE4 discretiza-

tions. For FD 5, we consider many grid sizes and we report in Table 2 the number of itera-

tions I and the execution time T (in seconds) for the PCCG corresponding to the numbering

schemes discussed in Section 4. We also report I and T for the basic (non-preconditioned) -

conjugate gradient method. The execution times are omitted for the 64x64 grid because

they are relatively small and thus inconclusive. Note that the global two color numbering

scheme is the usual red/black numbering scheme. "".

The results in Table 2 are obtained by fixing the shift factor, ca, (over relaxation fac-
a..-.

tor) to unity. In order to observe the effect of changing co, we report in Table 3. the results

e .'p.
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grid precond. one global column-wise no prec. p.op.
size method color 2-colors 2-colors 1-color

6x4 SSOR 70/ 97/ 84/ 11
6464 IC (Pd) 59/ 97/ 83/9/

lO~lOO SSOR 110/5.38 153/2.54 131/2.7?20/23
IC (Pd 90/4.42 153/2.57 129/2.69

iS~iSO SSOR 163/17.6 231/8.6 197/7.9 4955
_50x_150 IC (Pd) 136/14.0 231/8.7 193/7.8 4955

200X00 OR 218/41.3 308/20.3 262/18.4 561.
L I IC (Pd) 181/34.5 1308/20.3 1258/18.3

Table 2 - The number of PCCG iterations and the execution time (in seconds)
for Problem 1 with FD 5 discretization ((a= 1). V

gi rcn.one global column-wise.
gri pecod.color 2-colors I 2-colors

size method I/T CU'p I/T tp I/T CO

2020 SSOR 51/10.1 1.95 308/20.3 1.0 253/17.9 1.15
_____SIC (Pd ,w) 153/10.2 1.23 308/20.3 1.0 1253/17.9 1.13

Table 3 -The number of PCCG iterations (1) and the execution time MT for ~
Problem 1 with FD5 and the optimal choice of cu.

precond. one global column-wise
method color 4-colors 2-colors '

I/T &j /T (a I/T ca
SSOR 120/19.6 1.0 144/11.6 1.0 134/7.8 1.0
1C (Pd) 112/18.4 1.0 143/11.7 1.0 127/7.6 1.0

AI/T I/T cu0  I/T .wor,

SSOR 37/6.3 1.95 144/11.6 1.0 94/5.5 1.62
SIC (Pd .i)3816.5 -1.55 -144/11.7 .1.0 8515.3__ 1.43

Ino prec. I/T -273/4.89- ___ -__

VTable 4 - Results for problem 1 with FE4 on a 15OX150 grid.

for the SSOR/PCCG and the SIC (Pd .w)/PCCG methods with w=wc',p . the optimal value of

(o which gave the fastest convergence. In Table 4. we combine the results for co=1 and

in one table for the FE 4 discretization. %

Problem 2: (PROB 29 in [18)

Vy VU=0 on D

5%%

5% U%
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reported for this and the previous problems seem high compared to the running times which

are reported in other papers (e.g. [24, 25]). This should not be surprising because our

implementation is designed for general sparse matrices, and hence does not assume any spe- -

cial form for the stripes. Clearly, an implementation which is designed specifically for

matrices generated from rectangular grids would use the fact that all the stripes are parallel 1 "

to the diagonal of the matrix, thus eliminating the need for the time consuming gather and

scatter operations.

precond. one global column-wise
method color 4-colors 2-colors

I/T (a I/T (a I/T to
SSOR 136/22.7 1.0 171/13.5 1.0 140/8.5 1.0
IC(Pd) 126/21.1 1.0 170/13.5 1.0 132/8.1 1.0
IC M 96/17.4 1.0 166/16.7 1.0 109/8.1 1.0 ..

I/T I/T I/T o
SSOR 39/6.8 1.95 171/13.5 1.0 98/5.8 1.6 e.-'

SIC (Pd ,o) 39/6.9 1.55 170/13.5 1.0 86/5.2
SIC (P. ,w) 37/7.5 1.2 166/16.7 1.0 71/5.7 1.2

no prec. I/T = 647/12.8

Table 5 - Results for Problem 2 with FE 4 on a 15OX150 grid I

FE3  FEq -
precond. one global column-wise one column-wise
method color 4-colors 2-colors color 3-colors %

I W I W 1 0) I/T (a I/T (d
SSOR 108 1.0 450 1.0 120 1.0 109/19.3 1.0 114/9.9 1.0 V', '

IC(PI) 92 1.0 432 1.0 113 1.0 97/17.3 1.0 103/9.1 1.0
I coo0 t  I (0 ,-t  I Oo,, I/T CoW0 , I/T o

SSOR 1.9 135 1.3 109 1.3 35/6.4 1.95 86/7.5 1.6
SIC (Pd ,w) 32 1.3 122 1.2 105 1.2 46/8.4 1.4 80/7.1 1.3

no prec. 1=565 I/T - 556/12.1

Table 6 - Results for Problem 2 with FE 3 and FE9 on a 99X99 grid. --

Problem 3: (PROB 26 in [18])

V (l+x 2) 3 V U 60 x on D . Vrl

u =0 on OD

where D is the pierced rectangular domain of Figure 3. The result of the FE4 discretization I '%

for this problem using a 10OX200 pierced rectangular grid is given in Table 7..
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precond. one global column-wise -

method color 4-colors 2-colors
I/T W I/T ) I/T w

SSOR 90/10.8 1.0 112/6.5 1.0 106/5.0 1.0
IC (Pd) 69/8.4 1.0 108/6.4 1.0 100/4.8 1.0
ic (P) 69/9.0 1.0 113/8.3 1.0 104/5.8 1.0

I/T oao I/T jo, IT 0,t

SSOR 29/3.6 1.9 109/6.2 1.2 102/4.7 1.2 _.

SIC (Pd .&)) 29/3.8 1.22 106/6.1 1.15 95/4.5 1.2
SIC (P .w) 30/4.4 1.2 107/8.1 1.25 86/4.8 1.3

no prec. I/T 533/7.26

Table 7 - Results for Problem 3 with FE 4

By studying the above results, we may note the following:

1) For large grid sizes, the column-wise numbering scheme is consistently better than the

global numbering scheme. In fact, it seems that the global scheme may be recommended

(on the CRAY) only if the grid size is relatively small. More specifically, if the zero stretch N-

for the column-wise scheme is smaller than 64. Clearly, for such small problems, the

power of a supercomputer is not needed.
'4

2) If no adaptive procedure is incorporated in the PCCG solver to choose the optimal w. then

the natural choice is w0=1. In this case. it is clear from the results that the use of the

IC (Pd) preconditioner instead of the SSOR preconditioner reduces the number of PCCG

iterations for both the one color scheme and the column-wise coloring scheme. The advan-

tage of the IC (Pd) preconditioner is clear, given that the cost of the computation of the

IC (Pd ) matrix is equal to the cost of one PCCG iteration.

3) The IC (P,,) preconditioner may reduce the number of iterations over the IC (Pd)N_"

preconditioner. However, the IC (Pd )IPCCG runs usually faster than the IC (P" )IPCCG
5,,.

because it costs too much to compute the IC (P, ) factorization. Here. we would like to note q

that our implementation does not take advantage of the technique of Eisenstat [6]. which is

described at the end of Section 3. to reduce the work in SSOR /PCCG and IC (Pj )/PCCG.

Clearly, the use of this technique will reduce further the execution time of these methods

compared to the IC (P )/IPCCG.

0 '

• " '



-27- _

4) If a one-color numbering scheme is applied, then it is possible to reduce the number of

iterations in the SSOR/PCCG drasticly by using the optimum value of W. This drastic -. J

reduction offsets the disadvantage of having a unit zero stretch. In other words, if an adap-

tive strategy may be used to chose the optimum co, then the one-color numbering scheme

seems to be the most appropriate scheme to apply.

5) For problems that are well conditioned, as for example problem 1. the fastest way to

solve the problem is the non-preconditioned CG method. However, this is not the case for

problems 2 and 3 which are ill conditioned.

one col-wise col-wise global global
color 3-colors 2-colors 4-colors 2-colors

number of SSOR IPCCG iterations 163 187 197 204 231 V
number of IC (Pd )/PCCG iterations 136 165 193 199 231
the zero stretch A 1 50 74 5624 11175

Table 8 - The effect of A on the solution of Problem 1 with FD 5 discretization
on a 150x150 grid (o= 1).

6) There seem to be an inverse relation between the value of the zero stretch and the con- '

vergence rate of the PCCG. In order to be more specific, we consider the FD5 discretization

of Problem 1. and in addition to the numbering schemes reported in Table 2. we use a 3-

color, column-wise scheme, and a 4-color global scheme. The results which we report in

Table 8 confirm this inverse relation.

Finally, we would like to note that only rectangular and pierced rectangular domains

were chosen in the experiments because, first, we did not have a means for the automatic

generation of large irregular grids, and second, the numbering algorithm of Section 4.3 is. to

our knowledge, the first algorithm which aims at increasing the zero stretch for general

matrices. Hence, its performance may only be compared to an algorithm which produces VA

the maximum zero stretch. We believe that such an algorithm is NP complete.

4
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APPENDIX

Proof of Theorem 1 Let i and j be two nodes in some element e in fl, and let 1, .0 a=

1C -q. be the color given to i and 1, be the color given to j. where 1+= +1 if 1-<1 <q.

and 1 =1 if I =q. Note that either 1) i and j lie in the same column of nodes. CN, . in fl or

2) i lies in CN,. and j lies in the following column of nodes, namely CN,.+ 1 . Let also CE,

be a column of elements in n? which contains element e• and let ce,. be the number of ele- .

ments in CE...

From ALG6 and ALG7. it is clear that the number of nodes which are numbered

between nodes i and j, namely v(j)-U(i )+1, is equal to the sum of 1) the number of

nodes with color I which are above node i (including i ) in column CN. and 2) the number

of nodes with color 1+ which are below node j (including j) in column CN. or CN. +j

whichever applies.

Given that at most two elements in the same column may share a single node, and that

for any specific color, every element should contain a node of that color, we may conclude

that v(j )-.(i )+1 should be larger than. or equal to. the sum of 1) half the number of ele-

ments in CE,, above, and including, element e, and 2) half the number of elements in CE,..

below, and including, element e. In other words,

- + 1 > ce.. +1
2

'.

But A = mint((j )-v(i )). where e may be in any column in fl. Hence

Se

ce min+ 12

which gives the lower bound.

In order to establish the upper bound on A, we note that v(j )-v(i )-I is equal to the

sum of nodes of color 1 above node i and the nodes of color I + below node j (not including

i and j ). But, each element in fl may contain at most one node of any given color. Then

,, 'V(j )-(i )-1 4 ce,, - I

' .
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and the upper bound follows directly. 0

Proof of Lemma 1: Let CN,, be the uth column of nodes in 0) and let cnu be the number of

nodes in this column. In the global multicolor numbering scheme, the colors I...... are. 77

first, used to color the nodes in CNA+,, 4 . v =0,1,2..... such that any two neighboring nodes

in a column are given different colors. Then. the colors lp +1 .... 2/- are used to color the

nodes in CN 2+,,,-. v =0.1.2..... and so on. Thus. if the given color I satisfies

(k -l)vp < I k /T. for some k.1 <k (%/.then the number of nodes in 0 which are

given the color I, namely n1
0 . is obtained from

cn,

V =0.1...(4

where cn is the number of nodes which are given the color I in column CN,.-

In order to estimate each term in (14). we consider a particular column of nodes CN.
where u =k +v '"p. for some v, and we let L =(k -1)p . Clearly, the colors used to color

the nodes in CN,, are X=L +1,....L + 1P-. We also define a clique in CN, as a subset of

nodes within CN,, such that any two nodes in this subset are neighbors. Note that the

nodes in CN, which lie on a vertical side of an element form a clique. Let clq,, be the

number of such cliques in CN,. Given that any particular node in CN, may be in at most
t €- r--

two cliques, we obtain

clq,, > 2cn, X=L +1,• .L +'-p (15.a)

Also. the coloring scheme is such that any clique may contain at most one node of any par-

ticular color. This gives

dq. 4< cn, k=L +1, • .L +,,/- (15.b) '"g

From (15.a) and (15.b), we get, for the given color !.

cn42 cn '  L + 1. .L +

If we write the above inequality vp--1 times with X=L +1. .L +.fp., X1,, sum these

inequalities, and then add 2cn,', to both sides of the result, we get

%.

• •. "
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(vp +l) cn t 4 2 E cn,= 2 cn. (16)
X=L,',1

Similarly. from (15.a) and (15.b) we may obtain !" -

cn' >-cn X=L+1..L+,,

which leads to

(,rp- cn (17)

Equation (16) and (17) may now be combined into

" 2 -p -1 c n , Ki c n l 4 c'p, %1. , --1 cnu"-..

which, together with (14) gives

1 -f c v Cf 4 jP (18)

2,1p-1 v =o,1.. %/PJ + 1 v1.

Finally, we need to relate the sum in (18) to the total number of nodes i2 C1. Instead v

of dealing with complex formulas, we treat each of the cases FE4 and FE 9 separately. For

FE 4 , any column of nodes. C ,. in n) is enclosed between two consecutive columns of ele-

ments. This implies that cn, 4. cn. _.+cnu +1. Thus " %

Scn,, 4 2 T, cna. (19) ._°:

u =odd u =even

Noting that E cnu + E cn. -no, we may use (19) to obtain
u -odd Ui =Cven

-n 4 E cnu 4 - n a (20)

The same bounds (20) may be obtained for, cn,. which proves the following for FE4
v =odd

and p =4:

n1 < E cn, ,jj-n4 (21)

2"- 1 V-,1 . +1

% % N, . . . . . . . .

%"
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For FE 9 discretizations. a similar procedure, starting from cn, (cn +j + cn_ -2 and

cnU -<,¢nu 1 + cnu+ 2 , may be used to prove (21) for the case p=9. The result (12), then.

follows directly from (21) and (18). 0

Proof of Theorem I: From the definition of A, there exist two node i and j in an element

e such that v(j )--(i )=A. Let CEu be the column of elements which contains e. and let I

and I +1 be the colors of nodes i and j. respectively. The proof proceeds by the construc- ,

tion of two pierced rectangular domains fl, and f12 which overlap at element e. Namely.

fl, consists of element e, the elements in CN,, above e, and the elements in the following

columns CN +1.CN, +2* " • • The grid f12 consists of element e. the elements in CN. below

e. and the elements in the previous columns CN 1 , .CN,_ 1 . Let n and nf2 be the

numbers of nodes in fI and f)2. respectively, and note that n fI+n n 2=n (+p.

From the global numbering scheme, it is clear that the difference v(j )--i(i )+1 is equal

to the number of nodes in fl which have the color I. namely n n. plus the number of

nodes in Q 2 which have the color I + 1. namely n j1 + . That is

(j)-v(i)+ =n' + lnI+ (23)Q. 1"f12

But, 0L and fl2 are pierced rectangular domains, and thus. n nt and nf 1 obey the bound

of Lemma 1. The application of these bounds on (23) gives "-.

12 12
2,fp--1 [na,+r n ) < V(j)-v(i)+ 1< [n n+nn2].

Finally, (13) results by using the definition of A and n n=n '+n 0 2-P •

UA
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